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HEAT TRANSFER IN THE NEIGHBORHOOD OF THE 

BLUNT LEADING EDGE OF A CYI,INDRICAL WING 

DURING SLIP 

I -  

A.  A .  Yarkho 

ABSTRACT 3 3 b52 
The work applies two-dimensional solution of the 

heat transfer problem to a three-dimensional case with 

gas flow under stationary conditions and constant laminar 

f low,  Prandtl number, heat and wing surface 

temperature. 

The problem of heat transfer in the neighborhood of the leading criti- /22* 

cal point in a two-dimensional gas flow has been solved by A. Ye. Kalikhman 

(ref. 1). 

The present work generalizes this solution for the three-dimensional case 

involving the flow of gas around a cylindrical wing of infinite length during 

slip under stationary conditions. It is assumed that the flow in the boundary 

layer is laminar and that the wing surface temperature, the Prandtl number and 

specific heat are constant. An exact solution of the problem, when the Prandtl 

number is equal to one, has been obtained numerically by Ye. Reshotko (ref. 2). 

*Numbers given in margin indicate pagination in original foreign text. 
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1. L e t  u s  consider t h e  s t a t iona ry  gas flow around a wing of i n f i n i t e  length .  

We use  t h e  following symbols: 

x, y, z - coordinates of po in t s  i n  the region of t h e  boundary l a y e r  measured 

r e spec t ive ly  along the  a n  of t h e  a i r f o i l  from t h e  leading  edge i n  

the  plane perpendicular t o  t h e  genera t r ixes  of t h e  wing, along t h e  

normal t o  t h e  a i r foi l  and along t h e  span parallel t o  t h e  genera t r ixes  
I .  

( f i g .  11, 

u, v, w - ve loc i ty  conponents along t h e  x, y, z,  axes, i -  
4 - components along t h e  x, z, axes of ve loc i ty  U a t  the  ex te rna l  

0 
TJo, w 

boundary of t h e  boundary layer ,  

P - pressure,  

P - dens i ty  i n  t h e  boundary layer ,  

- dens i ty  a t  t h e  ex te rna l  boundary of t h e  boundary l a y e r ,  

T - temperature i n  t h e  boundary layer, 

I - temperature a t  the  ex terna l  boundary of t h e  boundary l aye r ,  

- ad iaba t i c  r e t a rda t ion  temperature, 

- s p e c i f i c  (mass) hea t  a t  constant pressure,  

0 
T 

T 

C 

00 

P 

I CL - dynamic v i s c o s i t y  coef f ic ien t ,  

h - coe f f i c i en t  of hea t  t r a n s f e r  

p r = P  - Prandtl  number 

R - gas constant 

CLC 

h 

j - mechanical equivalent of hea t  

I n  t h e  se l ec t ed  system of coordinates a l l  the  flow c h a r a c t e r i s t i c s  i n  the  

boundary l aye r  u, v, w, p ,  1, and T depend only on x and y, while a t  t h e  ex- 

t e r n a l  boundary of t h e  boundary layer  they  depend only on *. 
*We no te  t h a t  W=const. 
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It i s  assumed t h a t  t h e  ve loc i ty  d i s t r i b u t i o n  a t  t h e  ex te rna l  boundary of 

t h e  boundary l a y e r  Uo(x)  i s  known i n  t h e  neighborhood of t h e  leading edge of 

t h e  d n g * :  Uo = px, where B is  a constant. 

Figure 1 

Consequently t h e  system of equations f o r  t h e  laminar boundary l aye r  of /23 
gas i n  t h e  case of s t a t i o n a r y  flow when t h e  Prandt l  number and t h e  s p e c i f i c  h e a t  

are constant,  may be wr i t t en  i n  the  following form: 

(1) 

(2 1 

( 3  1 
(4) 

( 5 )  
P=PRT, 1 

P=f(T) .  ( 6 )  

iku 

d ( f 4  I <(@=-J, 
dx dy t 

0s I n  
W e  shall solve t h e  problem 

1) u=v=w=O, T=T 

2)  u=U (x),  w=W=const, T=To (x)  a t  the  ex te rna l  boundary of t h e  boundary 

t h e  following boundary conditions: 

= const a t  t h e  surface of t h e  wing (y=O), 
W 

0 

l a y e r  ( y  4 a). 

*This means that p(x) and To (x) are a l s o  known because according t o  t h e  Bernoulli  
equa t ion  dp I - N, due =, 

dx. 

and according to t h e  l a w  of energy conservation 
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. 
The variation in the dynamic coefficient of viscosity as a function of 

temperature, according to Chapmen and Rubezin (ref. 3) is given by the expression: 

where T" is the temperature of incomplete adiabatic retardation at the external 

boundary of the boundary layer(because only the velocity component Un 

decreases to zero), 

is the dynamic viscosity coefficient at the temperature T" 

is a constant which is approximately equal to 119 for air. 

00 

- 

" 
Po0 00' 

0 

S 
T 

Since U is small near the leading edge, in the future we shall: 
0 

1) neglect the terms the energy equation (4); these terms 

express the work performed by the pressure forces and partially the dissipation, 

2) assume that T =T* and p =p* is the gas density at the external 
0 00 0 02 ( p t 2  

boundary of the boundary layer during incomplete adiabatic retardation due to the 

fact that only the velocity component Uo decreases to zero). 

The last two assumptions itre analogous to those made in the work of Kalikhman 

(ref. 1). 

vt 2. To solve the problem we introduce a new variable 9 in place of y as /24 
proposed by A. A. Dorodnitsyn (ref. 4) : 

Then with the assumptions made above and with the selected law governing the 

variation in the dynamic coefficient of viscosity as a function of temperature as 

expressed by equation ( 7 ) ,  the system of equations (1) - (4) will have the form: 
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where 

The boi 

form : 

ndary conditions for the problem under consideration rill ha re tine 

1) u=v=w=O, T=T = const when 7 = 0, 

2)  U=U (x) = BX, w=W=const, T=T =T* 

If we let - = 1* in equation (8) the system of equations (8) - (10) may be 

w 

when 9 -. m . 
0 0 00 

PO 

? 
solved independently of (11). 

obtained from the solution of system (8)-(10) will be the same as in the well- 

The field of velocities in the coordinates x, 7, 

known analogous problem for the incompressible fluid (ref. 5): 

i# - fJ tf' (C), \, 

;= - Gf (C)J 

', m= Wg&Cc), J 

while the functions f ( j )  and g ( j )  are determined from the 
c 

ons and boundary conditions: 

(15 1 
(16) 

g"+fg'==4 (17) 

(18) g(O)-O, g ( 4 =  1. 

The primes indicate derivatives with respect to 5. 

*This simplification which pertains t o  the determination of the field of velocities 

and which does not affect the field of temperature too much, was used in (ref. 1). 
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The result of the numerical solution of equations (15) with boundary condi- 

This reference also presents tions (16) nay be found, for example, in (ref. 5). 

a table for functions g(g) and g'(C). 

If we transform from the variable Tl to the variable 5 in equation (11) (25 

and substitute u,v,w into it according to expressions (12), (13) and (14), we 

where 
: ) 

The boundary conditions w i l l  be: 

1) = r = const when g = 0 

2 ) L l  when 5 - 
Equation (19) is a linear nonhomogeneous differential equation with partial 

W 

v 
derivaties of the second order and with nonhomogeneous boundary conditions. 

Its solution is obtained quite easily by separating the variables: 

1. C 

Pr 1 fdC - 

0 0 

where 

. :  



3. The heat f l u x  fron; the gas to the wing surface is equal to: 
x _  

Differentiating equality (20) with respect to 5 and letting 5 = 0, we obtain: 

\ 
\ 

+\ 1' 
c 

- 
0 - 

c c I? . 
1 

C 
0 0 -Pr f fdC 

0 

Expression (22) for F'randtl numbers f r o m  0.6 to 1 may be approximated /26 
with a maximum error of 1 percent in the following manner: 

- (g) 0.570 Pro" (1 - TI) + 0.285 Pro*' m. \ 
_ _  - 1 C - s  

Then 

Since 
- v = = 2 ( 2 - 1 ) ,  ' 

we have 

or 

( 2 3 )  
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I 
where 

M i s  t h e  M number of t h e  unperturbed flow 
W 

X i s  t h e  angle of s l ip  of t h e  wing,, x = * .  
6 '  

4. Le t  us compare the  so lu t ion  which we have c - ta ined  w 

proposed by Reshotko ( ref .  2 )  f o r  t h e  case F'r = 1. 

When Pr = 1 expression (25) will have t h e  form: 

According t o  t h e  exact equation 

where .~ 

th t h e  exact one 

The values of K were obtained by Reshotko ( ref .  2 )  by a combined /27 
= 2-1-0 and TW numerical so lu t ion  of two ordinary d i f f e r e n t i a l  equations wi th  - 

wi th  d i f f e r e n t  w .  
0 

T 

T For t h e  case of t h e  greatest p r a c t i c a l  i n t e r e s t  0 < 2 ' < 1  t h e  e r r o r  i n  t h e  

by means of 
r8D 

c a l c u l a t i o n  of t h e  hea t  f l u x  from the  gas t o  t h e  sur face  of t h e  body 

t h e  approximate equation (26) does not exceed 16 percent i f  u) < 2, i 

example, when M, = 5 x c 65 or when M 
0 0 

= 4 x < 70 . 
W 

e., f o r  
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